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1 Introduction

In this paper we address two issues. First, we deal with the definition of the NS sector of

cubic superstring field theory. The action of this theory is given by [1–3],

S = −

∫

Y−2

(

1

2
ΨQΨ +

1

3
Ψ3

)

, (1.1)

where Ψ is a ghost-number one, picture-number zero string field and Y−2 is a mid-point

insertion of the double inverse picture changing operator. From this action one derives the

equation of motion,

QΨ + Ψ2 = 0 . (1.2)

There are several reasons for criticizing this theory, the most important of which is the

problem with defining the gauge transformation upon the inclusion of the Ramond sec-

tor [4]. Another, “aesthetical” objection comes from the fact that there are many ways

to define the Y−2 insertion. We confront this problem in section 2, where we prove that

classically all these theories are equivalent. We illustrate the general prove by an explicit

calculation of the action for the case of Erler’s solution [5].

Erler’s solution is the subject of the rest of the paper. It is a supersymmetric general-

ization of Schnabl’s solution [6] of bosonic string field theory [7]. The study of Schnabl’s

solution proved [6, 8–10] that some of Sen’s conjectures [11, 12] hold in the framework of

string field theory, which proved to be adequate for describing non-perturbative solutions.1

The idea of generalizing Schnabl’s solution to the supersymmetric theory was suggested

in [14]. There, a solution of the non-polynomial superstring field theory [15] was presented.

Unfortunately, it turned out that this solution is trivial. Then, Erler presented his solution

in the context of cubic superstring field theory. Using the equivalence between the two

1See [13] for a review of these and other results.
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formalisms of superstring field theories [16], Erler’s solution was mapped to a solution,

which differs from the one suggested in [14] only by the location of the P insertion.

In split-string notations [17, 18], Erler’s solution is given by,

Ψ = Fc
KB

1 − F 2
cF + FBγ2F ≡ ΨS + Ψ̃ , (1.3)

where ΨS is Schnabl’s solution and the insertion defining Ψ̃ can be written in the fermion-

ized variables [19] using,

γ2 = η∂ηe2φ . (1.4)

Furthermore, Erler found that his solution has the correct tension for cancelling the original

D-brane tension and that the cohomology around the solution is trivial, in accord with the

interpretation of this solution as a closed string vacuum solution.

Despite the success of Erler’s solution in reproducing the physics of the closed string

vacuum, it was claimed in [20] that this solution cannot represent this vacuum, since it

is defined on a BPS D-brane that does not support a tachyon field. Moreover, it was

suggested that a variant of Erler’s solution that is defined only on a non-BPS D-brane

can describe the non-perturbative vacuum. It was also shown that this variant has the

correct action. The cohomology of this variant was shown to be trivial in [16]. However,

it was also shown there that the two solutions are a part of a one-parameter family of

solutions. All these solutions share the properties of having the correct action and a trivial

cohomology. Furthermore, it was claimed that they are all gauge equivalent and the gauge

transformations were written explicitly. These gauge transformations seem to be regular

and the contracting homotopy of the kinetic operator around the solutions transforms

trivially with respect to them. It seems that if Erler’s solution does not describe the non-

perturbative vacuum, these solutions do not describe it as well. Hence, we should decide

whether we accept that Erler’s solution represents the closed string vacuum or reject it and

look for other, new solutions (presumably defined only on non-BPS D-branes).

Of course, rejecting the natural interpretation for Erler’s solution without providing

an alternative explanation to the results regarding its cohomology and action could not be

satisfactory. Indeed, an alternative point of view on these matters was presented in [20].

According to this proposal, the cohomology of Erler’s solution is trivial only for the NS

sector. Hence, the solution presumably represents a supersymmetry breaking phase. In

section 3, we explain why this interpretation is wrong.

In order to decide what is the physical meaning of Erler’s solution, we evaluate the

boundary state associated with it in section 4. The boundary state associated with a given

solution was constructed by Kiermaier, Okawa and Zwiebach in [21].2 The boundary state

carries a full information on the BCFT that the solution describes. Thus, its triviality

in the case of Erler’s solution proves that this solution indeed corresponds to the closed

string vacuum. It seems that string field theory does not need a tachyon in order to be

able to describe this vacuum. We return to this issue and offer further concluding remarks

in section 5.
2This relies on the construction of gauge invariant overlaps of open-closed strings [22–28] as well as on

techniques devised in the evaluation of scattering amplitudes in Schnabl’s gauge [29–31].
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2 The classical equivalence of cubic NS superstring field theories

The cubic superstring field theory was criticized on several grounds. The most commonly

made reservation is related to the use of picture changing operators in the definition of

the action. We believe, that at least classically, this fact by itself should not pose any

problem [32]. However, there is a genuine problem, namely that of using picture changing

operators in defining the gauge symmetry in the Ramond sector [4]. These operators collide

when one tries to iterate the linearized gauge transformation. Hence, the finite form of the

gauge transformation does not exist and the theory cannot be expected to describe string

theory. Nonetheless, one might still hope that, at the classical level and when restricted to

the NS sector, the theory still makes sense and has some predictive power. This is indeed

the case as can be seen from the existence of Erler’s solution.

In addition, an “aesthetic” reservation exists against the NS sector of the cubic theory.

The matter here is the appearance of the Y−2 operator in the definition of the theory, as

this operator is not unique. Note that the space of operators obeying all the properties

that Y−2 should have is seven dimensional [1]. Of this space, only a one dimensional sub-

space is left after identifying operators that differ by Q exact terms. Nonetheless, while this

resolves the ambiguity for the worldsheet theory, it does not resolve it a-priori within string

field theory. Moreover, the fact that we have two “mid-points” in our disposal, namely ±i,

implies that one can use an arbitrary linear combination of terms, such that each term is

the product of two local picture changing operators, whose total picture number is −2,

Y−2 =
∑

n

unXn(i)X−2−n(−i) . (2.1)

Here, the un are coefficients and Xn is defined as a picture changing operator that changes

the picture by n units. In particular, X−2 is (a specific local choice of) Y−2. The freedom

of adding exact terms in the definition of the Xn’s remains. This construction implies that

the space of superstring field theories defined is in fact infinite dimensional and it is not

a-priori clear whether they are all equivalent and if not, which one is the correct one.3

It is usually claimed that the “non-chiral” theory obtained by defining

Y−2 = Y (i)Y (−i) , (2.2)

is the correct one, since “the other theory” does not obey twist symmetry. However, as we

stressed, there are infinitely many “other theories”. Many of these theories do obey twist

symmetry. Thus, the only obvious reason to prefer the theory (2.2) is its simplicity. This

is not a strong enough argument when it comes by itself. A stronger argument in favour of

the “non-chiral” theory is the recently established equivalence [4, 16] between it and the

non-polynomial theory [15, 33, 34].4

3There is an important restriction on the form of Y
−2: It has to be a primary conformal field. We return

to this issue below.
4This equivalence is classical, and is defined up to issues of regularization of a mid-point insertion in its

definition. It is then defined in the NS sector, although formally it holds also in the Ramond sector, despite

the problems with the definition of the gauge symmetry in this case.
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One might still not be happy about the choice of the chiral insertion, since it seems

that it is fixed not by its own merits, but by an equivalence to another, more established,

formalism. Also, the proof of equivalence does not rule out the possibility that some of

the other theories are also equivalent to the non-polynomial one. Here, we want to show

that all these theories are classically equivalent, i.e., they all have the same solutions and

gauge symmetry, they define the same boundary states and the actions of these solutions

do not depend on the specific choice of Y−2. The proof that the solutions and gauge

transformations are the same follows from assuming that the space of string fields is defined

in a way that avoids potential zeros and singularities with all the Y−2’s. The simplest

possibility is to assume that the space of string fields contains no states with mid-point

insertions [32]. The assertion regarding the boundary state is then trivial, since it depends

only on the solution itself. What is left to prove then, is only that given a solution, its

action is the same regardless of the choice of Y−2. We prove this assertion in 2.1.5 Then,

in 2.2, we evaluate the action of Erler’s solution in the theory with a chiral Y−2 insertion and

show explicitly that it is the same as in the case of a non-chiral insertion evaluated in [5].

2.1 The general proof

Let there be two theories that differ by their Y−2 insertion. Then, up to the total scaling

that should be canonically fixed, these insertions differ by aQ-exact term in their definition,

Y
(2)
−2 − Y

(1)
−2 = QΥ . (2.3)

The case where both mid-points are used also falls under this definition. The reason being

that the local Y−2 can be defined as,

Y−2(w) =

∮

w

dz

2πi

Y (z)Y (w)

z − w
, (2.4)

and similarly for the other picture changing operators. Adding a Q-exact term QΞ(i) to

the insertion at z = i, while not changing that at z = −i, can be achieved by considering,

δXn(i)X−2−n(−i) = Q
(

Ξn(i)X(−i)
)

. (2.5)

Moving X from one point to another can be achieved by the small Hilbert space exact term,

X(i) −X(−i) = Q
(

ξ(i) − ξ(−i)
)

. (2.6)

Similarly, Y can be moved since it is also exact in the large Hilbert space,

Y (z) = Q

(

i

5
c ξ∂ξe−3φψ · ∂X − ξe−2φ

)

. (2.7)

Expressions like the ones above can be used in order to turn an insertion of the form

XnX−n−2 into an insertion of the form Xn±1X−n−2∓1. Hence, what we have to show is

that two theories, whose mid-point insertions differ as in (2.3), are classically equivalent.

5Our proof is reminiscent of the analysis at the end of section 4 of [35].
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Let us now write the difference in the action (1.1) of a given solution, between two

theories that differ as in (2.3),

δS =
1

6

∫

Ψ3QΥ =
1

2

∫

QΨΨ2Υ = −
1

2

∫

Ψ4Υ =
1

2

∫

Ψ4Υ = 0 . (2.8)

Here, in the first equality, the equation of motion (1.2) was used. Then, we integrated Q

by parts and used the fact that Υ is an odd mid-point insertion in order to rearrange the

various terms. In the third equality, we used the equations of motion again. Next, we used

once more the cyclicity of the integral and the fact that Υ is a mid-point insertion in order

to move the first Ψ to the last position, picking a minus sign on the way. This implies that

the expression vanishes and the proof is complete.

There are two potential difficulties with the proof above:

• The proof (2.8) assumes a local mid-point insertion. However, (2.4) uses a neighbour-

hood of the mid-point. We believe that this is not really a problem, since the contour

can be made arbitrarily small and hence the manipulations of (2.8) can be justi-

fied up to an arbitrary accuracy, for an arbitrary solution that carries no mid-point

insertions.

• The Y−2 insertions have to be primary conformal fields. Nonetheless, it might seem

that the proof works regardless of this requirement. Indeed, one may consider a

particular conformal frame for the evaluation of the action, in which changing the

order of the fields is described by an SL(2) transformation. An example of such a

frame is the unit disk, cut into equal wedges. Changing Y−2 to a weight zero non-

primary insertion works fine in this coordinates. However, if we want the theory to be

well defined, regardless of a conformal frame, we should insist on having insertions of

(zero weight) primaries at both mid-points. Then, the proof above works, provided

that QΥ is primary, i.e., provided we are relating two legitimate theories.

2.2 An explicit calculation: Erler’s solution

In the developments following Schnabl’s solution, analytical solutions were constructed

that describe vacuum solutions and marginal deformations [14, 36–44]. The marginal

deformations depend continuously on a parameter. The derivative of the action with respect

to this parameter gives an integrand that is proportional to the equation of motion. Hence,

the action of the marginal solutions is zero, as is adequate for a solution that describes a

marginal deformation. Thus, we cannot use these solutions for a non-trivial verification of

the proof above. The only other analytical solution at our disposal is Erler’s solution (and

its gauge equivalent ones [16, 20]).

In [5], Erler evaluated the action of his solution using the bi-local version of Y−2 (2.2).

According to our discussion, the same value for the action should be obtained upon eval-

uating the action of this solution using a local primary insertion. As we already stated,

there is (up to a scaling) a seven dimensional space of potential Y−2’s. However, not all

of them are primary. We consider a particular, primary representative in this space and

– 5 –
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normalize it canonically, i.e., we demand that it obeys the OPE,

Y−2(z)X(w) = Y (w) + O(z − w) . (2.9)

The insertion we consider was presented already in [3]. It is given by,

Y−2(z) = −e−2φ(z)
−
i

5
c∂ξe−3φψµ∂X

µ(z) . (2.10)

For a solution, the action (1.1) can be reduced to,

S =
1

6

∫

Y−2Ψ
3 . (2.11)

The solution (1.3) has no explicit dependence on the matter (Xµ and ψµ) sectors.6 Thus,

the second term in (2.10) cannot contribute. Inspecting the solution (1.3) further, we see

that the second term of this solution cannot contribute, since a total φ charge of −2 is

necessary. This charge is exactly supplied by the first term of (2.10) and there is no term

that can decrease it. Hence, terms that increase it will not contribute to the action.

We conclude that we are left with,

S =
1

6

∫

e−2φΨ3
S , (2.12)

where ΨS is the first term in (1.3). Now, the only explicit φ dependence appears in the

insertion. The Ψ3
S implies that this term should be evaluated on various wedges and that

derivatives with respect to wedge size should be performed, but only after evaluating the

expectation value in all sectors. The e−2φ insertion is a weight zero primary. Hence, its

expectation value is surface-independent and equals one in the conventions we use here.

Evaluating the trivial φ-sector expectation value leaves us with,

S =
1

6

〈

Ψ3
S

〉

, (2.13)

where the expectation value now is only in the bc sector. However, this is exactly the

expression for the action of Schnabl’s solution, which is equal to Erler’s one. It is interesting

to note that the evaluation of the action of Schnabl’s solution [6, 8, 9] is technically very

different from the one used by Erler for the case of the non-chiral Y−2 [5]. Hence, the

evaluation performed here gives a non-trivial verification of the general case proved above.

Our choice of a chiral Y−2 was criticized for not being twist invariant as well as for some

peculiar properties of its level expansion [45]. We conclude, that explicit twist symmetry of

the action might not be that important, at least classically, and that the strange low-level

behaviour found with this insertion is merely a level-truncation artifact.

6It has implicit ones, since K is an integral of the total energy momentum tensor. Moreover, the wedge

states that appear in the expansion also depend on K. However, this dependence has a geometrical inter-

pretation in terms of surfaces on which the expectation value should be evaluated. Hence, our conclusions

do not change.

– 6 –
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3 The triviality of the cohomology in the Ramond sector

An alternative interpretation of the physical meaning of Erler’s solution was suggested

in [20], following similar proposal for the interpretation of a level-truncated precursor of

the same solution [46]. The interpretation is that of a solution that breaks supersymmetry.

Hence, it was suggested that while perturbative NS degrees of freedom are absent around

this solution, Ramond degrees of freedom remain. Here, we prove that the cohomology is

trivial also in the Ramond sector.

In order to decide on this matter, the theory should be capable of describing the

Ramond sector. While we claimed in [4] that the Ramond sector is not well-described by

the cubic theory, it is well-described at the linearized level. Hence, we believe that we can

decide on this matter from studying the Ramond sector of this theory. Alternatively, we

may say that our conclusion on this matter are founded to the same degree in which the

question is well defined.

Stating the above, the proof is identical to the proof in the NS sector. The absence of

perturbative modes for the theory expanded around the vacuum solution was demonstrated

by defining a ghost-number −1 state AI satisfying

QAI = I , (3.1)

where Q is the kinetic operator around the solution and I is the identity string field. The

form of AI was found in [10] for the case of Schnabl’s solution. Then, it was shown in [5]

that the same string field works also for the vacuum solution of the cubic superstring field

theory. For the generalizations of Erler’s solution, introduced in [16, 20], it was shown

in [16], that again the same AI is still adequate. It was also shown there that these

generalizations are in fact gauge equivalent to Erler’s solution.

All that is needed now for proving the triviality in the Ramond sector of the solutions

of [5, 16, 20], is to note that the same kinetic operator is used in this sector and in the NS

sector. This fact is blurred in the operator representation, where the expansion of Q is in

terms of different oscillator modes. Nonetheless, the conformal current JB defining Q is

the same in both cases and in terms of conformal fields the Ramond property of the string

field is expressed by the use of spin field in its definition [19].7 Thus, we conclude that the

Ramond sector cohomology is also trivial, as stated.

4 The boundary state of Erler’s solution

We would like to understand the physics behind Erler’s solution. The question arises:

Which objects can we extract from the form of the solution that would characterize its

physical meaning? Two obvious entities are the action of the solution and the cohomology

around it. Another important example is the boundary state defined by the solution. A

boundary state is equivalent to a BCFT. Hence, defining a boundary state using a classical

solution holds a lot of information regarding its properties.

7This argument is close in spirit to the arguments in open-closed string field theory [47] where Q is

moved from an open string field to a closed string field or vice versa.

– 7 –
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Following [22, 23], it was shown by Ellwood [25] that a coupling of a closed string to

a classical solution gives information, which is related to the boundary state of the new

BCFT. However, only on-shell closed string states are allowed in this construction, despite

the fact that the boundary state is not restricted to this case. The origin of this restriction

is the use of the string mid-point for the insertion of the vertex operator defining the closed

string state. While the mid-point is the only point invariant under the star product [35],

it is also infinitely rescaled upon the contraction with the identity string field used in the

constructions of [22, 23, 25]. The only operators that can be consistent with such an infinite

rescaling are the scalars, i.e., the primary zero-weight conformal field that describe on-shell

closed strings.

A way around this difficulty was devised in [21], where the conical singularity was re-

placed by a closed string local coordinate patch of arbitrary size. In this way, the boundary

state itself can be defined (up to a possible gauge transformation) in terms of the classical

solution. This construction makes the identification of the closed string vacuum extremely

simple, since the boundary state that corresponds to this vacuum vanishes identically. In-

deed, in [21], it was shown that this construction gives an identically zero boundary state

(after a non-trivial calculation) for Schnabl’s solution. Here, we show that the boundary

state defined by Erler’s solution also vanishes identically.

Our first task is to define the boundary state in the case of superstring field theory,

since [21] dealt with the bosonic case. Ideas regarding the needed generalization were

proposed in [21, 24, 25]. All these papers dealt with the non-polynomial theory [15, 33, 34].

However, the case of the cubic superstring field theory [1–3], is even simpler. The relation

between the constructions in the cases of the cubic and non-polynomial theories can be

understood in terms of the classical equivalence between these formulations [4, 16]. Let us

describe these suggestions.

For the one-open-one-closed gauge invariant string vertex, Michishita [24] pro-

posed to use,
∮

V Φ . (4.1)

Here, Φ is the open string field of the non-polynomial theory, V is the closed string vertex

operator, which is inserted at the string mid-point and
∮

represents the evaluation of the

expectation value in the large Hilbert space, in which Φ resides. To get the analogous

expression in the cubic theory we assume that the string field Φ is related to the cubic

string field Ψ by [16],

Φ = PΨ , (4.2)

where,

P = ξY = −cξ∂ξe−2φ , (4.3)

which is the contracting homotopy operator for Q in the large Hilbert space, is inserted

at the mid-point. The only presence of the ξ zero mode in (4.1) comes from the ξ in the

definition of P (4.3). Thus, (4.1) can be written as,

∫

Y V Φ . (4.4)

– 8 –
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Now, Y and V are inserted at the mid-point, i.e., at ±i in the standard coordinates. Since V

is on-shell, acting on it with Y is a legitimate picture changing and the resulting expression

is just the natural coupling of open and closed strings,
∫

V Φ , (4.5)

where now V is written in the correct picture to begin with. A variant of this construction

was suggested by Ellwood [25]. There, it was not assumed that the closed string V obeys,

QV = 0 , (4.6)

while an explicit Q was assumed to act on Φ. Integrating by parts leads to the same expres-

sion as before, only with the restriction that V is not only closed, but is exact. The moti-

vation for this change was the relation between the non-polynomial and the cubic theories,

Ψ = e−ΦQeΦ , (4.7)

since, upon integration, the r.h.s reduces to QΦ. Note, that (4.7) is exactly the inverse

mapping used in [16].

Indeed, in [21], it was suggested that in light of the above, the generalization to the

non-polynomial theory of their boundary state can be achieved by replacing everywhere

Ψ by e−ΦQeΦ. They also suggested that this construction can be used, as we are doing

here, in order to decide whether the vacuum solution of [16] is indeed a vacuum solution.

This solution is, however, nothing but a mapping under (4.2) of Erler’s solution. Hence,

using the inverse map (4.7), we conclude that the suggestion of [21] corresponds to using

their formalism without any modification in the cubic superstring field theory. This gives

gauge covariant expressions by construction, since the algebraic properties of the bosonic

theory and the cubic superstring field theory are the same. Then, obtaining a trivial

boundary state for Erler’s solution implies that Erler’s solution and its analogous one in

the non-polynomial theory, are closed string vacuum solutions.

The boundary state has a very clear geometric representation (see [21] for more details).

One takes a propagator at some specific gauge and cuts it in half along the trajectory of

the string mid-point. There exists a natural coordinate system in which the cut line and

the original boundary are both horizontal and the whole half-propagator strip is obtained

by horizontal translation, as in figure 1. The left and right curves are identified. Now, cuts,

whose forms are also obtained by horizontal translations are introduced. The number of

cuts is summed over and their location is integrated over. Into each cut one has to glue

a factor of [BR,Ψ], where BR is a specific b-ghost line integral. For the case of Schnabl’s

solution it was shown that this construction gives a vanishing boundary state. Erler’s

solution contains two pieces (1.3). The first term is identical to Schnabl’s solution from a

geometrical point of view.8

8The Virasoro generators used now are the ones of the NS theory. Hence, strictly speaking the first part

of Erler’s solution differs from Schnabl’s solution. Nonetheless, the results of all the evaluations depends

on the induced geometry. Thus, this part gives exactly the same result in the NS theory, as was obtained

from Schnabl’s solution in the bosonic theory.

– 9 –
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Figure 1. Constructing the boundary state for a generic half-propagator: The left and right (black)

curves are identified. The bottom (blue) line has the boundary conditions of the original BCFT.

The top (red) line gives (after the identification) the circle to which the test closed string state

should be glued. The properties of the solution are encoded by insertions on cuts, summing over

all possible amounts and locations of the cuts. Here, we plot two such cuts (green). The factors

of [BR,Ψ] are glued into this cut by identifying the left and right parts of Ψ with the two sides of

the open cut. This ensures that the string mid-point touches the red line. Note, that while “most

of the BR line integral” can be freely deformed, the point where it touches the closed string (red

line) is fixed. In contrast to that, BR can be deformed along the open string boundary (blue line)

in light of the doubling trick.

The simplest way to show that the boundary state for Erler’s solution is identical to

that of Schnabl’s solution is to show that the second term in the r.h.s of (1.3) does not

contribute to [BR,Ψ]. Now, we face a difficulty, since the exact form of the gluing should be

defined in order to perform explicit calculations, e.g., the functional form of the integrand of

BR changes upon crossing the lines where Ψ is glued and this change can be different in the

right and left sides. Hence, treating BR as a genuine contour integral is too naive. Luckily,

this issue was resolved in [21], by giving explicit expressions for the case of a Schnabl

gauge propagator. Then, a conformal transformation to a coordinate system similar to

the cylinder coordinates is performed. In this coordinate system the segments between

the cuts are mapped to “slanted wedges” and this “slanting” of the wedges introduces a

hidden boundary at infinity, which is the closed string boundary. Explicit calculations can

be performed, at least for wedge-state-based solutions, as we have here. In the case at

hand, we can use eq. (6.23) of [21], in order to replace the BR in [BR, Ψ̃] by a sum of a

genuine contour integral and the standard B line integral,

[BR, Ψ̃] → k1

∮

dz
(

(z − z1)b(z)Bγ
2(z2)

)

+ k2Bγ
2(z2)B . (4.8)

Here, k1,2 and z1,2 are known constants, which are of no importance for us. The contour

integral can be closed, since no explicit c insertions are present,9 while the second term

vanishes since the B line integrals can be moved until they annihilate each other. It follows

that, in each cut, Erler’s solution contributes the same as Schnabl’s solution. It follows

that the boundary state associated with Erler’s solution is identically zero as stated. We

conclude that this solution indeed represents the closed string vacuum.

9The implicit ghosts in the Virasoro generators were already taken care of in defining the gluing.
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5 Conclusions

The classical equivalence of the various cubic superstring field theories is an important

step towards a credible cubic superstring field theory. However, the fact that our proof

is classical implies that off-shell (in the sense of string field theory) string fields, might

have their action depend on Y−2. Also, there in no sense in which we could have defined

it quantum mechanically, due to the problems with defining the Ramond sector. Indeed,

finding a consistent definition for the Ramond sector seems as the predominant obstacle

towards a sensible cubic theory. After this problem is resolved, one would have to address

the quantum equivalence, e.g., study whether (loop) amplitudes give the same results

regardless of Y−2.

We proved that Erler’s solution corresponds to the closed string vacuum, regardless of

the question of existence of a tachyon field. This attribute caused the initial mistrust of

this solution, since previous study of non-perturbative vacua in string field theory focused

on tachyon condensation. A related question is whether the original and final states are

continuously connected. It was already suggested that in some sense one can think of

the closed string vacuum as being continuously connected to the perturbative one [16].10

Anyhow, we find it very encouraging that string field theory is capable of describing this

case as well. It is very desirable to unveil the full realm of use of string field theory. In

particular, in is interesting to find out whether it is capable of describing multi D-brane

solutions when the original BCFT is that of a single D-brane.

The construction of the boundary state can be naturally generalized to the case of a

non-BPS D-brane [52, 53]. Here, the NS+ string field Ψ+ is tensored with the “internal

Chan-Paton” factor σ3, while the NS− string field Ψ− is tensored with iσ2. The integral

in the action includes now also a normalized trace over the internal Chan-Paton space. It

is clear that the internal Chan-Paton space that appear in Ψ should be eliminated in order

to obtain the boundary state in the correct space. The natural way to do that is to include

a normalized trace in the definition of the boundary state. Then, in order to obtain the

previous results for Ψ that fully resides in the NS+ space, the σ3 factor of Ψ+ should be

eliminated as well. Since Ψ enters the construction in the combination [BR,Ψ], what we

need is to append BR with a factor of σ3. It seems that these slight modifications are all

that is needed. Erler’s solution was generalized (on the non-BPS D-brane) in [16, 20] to a

one-parameter family of solutions. It was claimed in [16] that these solutions are all gauge

equivalent. It would be interesting to verify explicitly that these solutions also correspond

to a vanishing boundary state (or a gauge transformation thereof).

10Note that, at any rate, the identification of the closed string vacuum as the end point of tachyon

condensation is not trivial. The marginal deformation that corresponds to tachyon condensation describes

the absence of the original D-brane together with the radiation emitted during the condensation process [48].

In particular, the energy of the solution describing the marginal deformation is always zero. There are also

technical problems with this identification, such as wide oscillations [36, 37, 49, 50]. Nonetheless, there is a

sense in which the closed string vacuum can be identified with the endpoint of tachyon condensation [51].
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